ANALOG SOLUTION OF CENTRAL FORCE PROBIEM

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCH
-

ANALOG SOLUTION OF
CENTRAL FORCE PROBLEM

by

DEAN N. McLAUGHLIN
LIEUTENANT, UNITED STATES NAVY

NPS ARCHIDE

$$
\begin{aligned}
& 1960 \\
& \text { MCLAUGHLIN, } .
\end{aligned}
$$

ANALOG SOLUTION OF
CENTRAL FORCE PROBLEM

* * * * *

Dean N. Mc Laughlin

Electromic analog computers have been used extansively for the solution and display of many dynamics problems. The majotity of the problems worked with have been those involving linear differential equations with constant coefficients. In cases involving nom-1inear differential equations fewer solutions have been developed. This has been due matriy to the need of using non-linear elements in the computer circuits when setting up the solutions.

One such problem, that of a mass moving under the action of a first power central force, is treated in some detail. The differential equation is derived, the problem is scaled, and the circuitry developed. Solutions obtained by the use of the electronic analog computer are displayed and compared with solutions obtained by numerical methods and errors and their sources are discussed. Finally there is an overall evaluation of the usefulness of analog computets to this sort of problem. In an appendix, a second practical dynamics problem is discussed, but a solution was not obtained due to lack of time aquitable。

TABLE OF CONTENTS

Section Title Page

1. Introduction 1
2. Background 1
3. The Problem and General Method of Solution 2
4. The Differential Equation of Motion 4
5. Discussion of Equipment 5
6. Computer Equation and Scaling 7
7. Analog Computer Circuits 8
8. Results 10
9. Discussion of Discrepancies 23
10. Conclusions 24
Bibliography 26
Appendix I 27
Appendix IT 37
Appendix III 42
Figure
11. Force Diagram for Central Force Problem 4
12. Division Circuit 9
13. Circuit Diagram 12
14. Photograph of Computer Assembly 13
15. Photograph of Problem Board 14
16. Recordings of, \ddot{R}, Z, R, and \dot{R} 15
17. Recordings of, θ, R, R, and θ 16
18. Summary of Analog Results 17
19. Radius vs Time Curves 18
20. Angle vs Time Curves 19
21. Radius vs Angle of Rotation Curve 20
22. Z vs Radius Curve 22
Al3. Table of Numerical Integration 30
A14. Table of Calculated Values 32
Al5. Table of Calculated Values 33
A16. Integration Curve, Part 1 34
A17. Integration Curve, Part 2 34
A18. Integration Curve, Part 3 35
A19. $\dot{\theta}$ and r vs Time Curves 35
A20. \dot{r} vs Time Curve 36
A21. Table of Circuit Elements 41

	(without subscripts) Constants in differential equation
C_{1}	Capacitor $\mathbb{R}=\mathbb{E}, 1,2,3, \ldots \ldots$)
M	Megohm
R	(without subscript) Voltage representing radius r
R_{i}	Resistor (il $=\mathrm{f}, 1,2,3, \ldots .$.
X	A capital representing the voltage equivalant of a variable x
7	Orspurt voltage of division circuit
a	Coefficient potentiometer value
$e_{\text {d }}$	Input voltage so an operational amplifier
e	Output voltage of an operational amplifier
f	(subscript) Element in feedback loop ."
5	Radius
${ }_{c}$	Computer time
${ }^{\text {P }}$	Problem time
α_{i}	Scaling factor $(i=1,2,3, \ldots)$
θ	Angle of rotation
ω_{i}	Input voltage coefficient ($i=1,2,3, \ldots$)
-1	Capacitor
M	Resistor
	Operational amplifier
-a	Coefficient potentiometer
$\rightarrow+$	Fusction Multiplier

1. Introduction

This thesis presents the electronic analog solution to a non-
linear dymamics problem which leads to the differential equation
$\hat{X}=\frac{A}{x^{3}}+B x_{i}(C$. An example problem is taken and the steps in reduc108 it to a form suitable for an electronic analog computer, hereafter referred to as an analog computer, are shown. The results are then compared with two solutions obtained by numerical methods. In Appendix III an equation of the form; $X^{2}=A X^{3}+B x^{2}+x+D$
discussed and the problems encountered in trying to obtain an analog computer solution are delineated.

The writer wishes to express his appreciation for the assistance Given him by Professor John E. Brock and to the Professors, particularly Professor 0 . H. Polk, and the technicians of the Electrical Engincering Department. The numerical solutions in Appendix 1 were contributed by Professor Brock.
2. Background.

Solutions for many dynamics problems have been established using the analog computer and references can be found in the technical Interature. One such reference for a non-linear problem, Analog Computer Solution of a Nor-Iinear Differential Equation, by H. G. Markey, (2) was Eound but was only applicable in a general way to this ingestigation.

It was considered that if a means could be found to display some of che classical problems encountered in early college dymamics on the

[^0]

andoe compriter the following advantages would be obtained.
(a) the general usefulness of the analog computar could be made more ceadily apparent;
(b) in dealing with these problems attention could be Eocusea on the dymamic principles leading to the governing differential equations and upon the mechanical significance of the results and not upon the mathe~ matical difficulties in obtaining an analytical solution;
(c) In the case of those problems where analytical solutions have been obtained for certain particular parameter values and which therefore seem to be separated into many different cases the dymamical significance of which is not apparent, the general problem could be dealt with directly;
(d) It would be possible to include noxmal dynamical inEluences (such as energy loss due to pivot friction or wiadages without so complicating the mathematics of the solution that the modified problem appears to be entirely different from the idealized problem.

Ire addition to the above it was desired to obtain these results

- 3simg only the amalog computers and their associated equipment mormally available in an analog computer laboratory. 3. The problem and general method of solution.

The problem considered was that of determining the subsequent motion of a body weighing 1930 pounds, attached to a spring laving a Exee lengh of five inches and a scale of ten pounds per inch, when released with the following initial conditions. At the finitial instant ther radius is four inches and its rate of change is zero; the polar amele f, is zero and its rate of change is three radians per second.

The gther end of the sjexing is attached to of fred point amd the body 15 wemitted wo slide without friction ufon a horizontel plane. We will discuss the scquerce of steps necessary ror the solution Ge problem of this type, and then we will proceed with the solution. Dae might of course proceed whth full scale experimental program as a method of solution, but eliminating this possibility we would
a. Using the primcipals of Mechanics arrive at one or more differential equations describing the motiono
b. Solve these equations, incorporatimg the starting conditions. This solution may be analytic, mumerical. experimental dealing with possibly, scaled down mechanical vaxiables), or by means of an analog, in which one deals experimentally with variables of another type (such as electrical) which satisfy similax differential equations.
c. Interpret the mathematicals experimental. or analog results in the proper mechanical light so as to arrive at a meaningful solution to the original problem.

Hu thus thesis, we are investigating the practicability of puo. ceding immediately from the first step to a solution by use of standard analog computer equipment. We do not have an analytical solution to the problem stated, Ithough it is likely that one might be obtained in terms of elliptic functions and integrals. Howevera in an apperdiz We will develop two different humerical solutions to the problem with Which we can compare our aralog solutions.

The differential equation of motion.
Fig. 1 shows the body in a general position. The solid arrow represents the spring force $F_{s}=10(r-5)$, where r represents the radial distance from the fixed point 0 . The dotted arrows represent D^{\prime} Alembert forces necessary for dynamic equilibrium. We see that

$$
\begin{aligned}
F_{s}+m a_{i} & =0 \\
m a_{b} & =0
\end{aligned}
$$

Now by kinematics, $a_{n}=\pi / 7-1 b^{2}$ and $a_{\rho}=\frac{1}{7} \frac{d}{d t}\left(h^{2} b^{2}\right)$. From the second equation we see that $M=C=C$ inst. This can also be seen from the fact that the angular momentum of the system about 0 , namely mo r ${ }^{2} \theta$ is invariable. From the first equation, we have $10(r-5)+\frac{5 \times 3 \delta}{384}\left(\pi-7 \theta^{2}\right)=0$, and from this we get $2 \pi-10+M-17 \dot{\theta}^{2}=0$ 。 Substituting $\quad \theta=4 / 12$ we finally get $\hat{\gamma}=\frac{c^{2}}{\nu^{3}}-2.7+10$ In our case, evaluating C at the initial instant we have $C=48$. Thus we have as our set of differential equations:

$$
\begin{aligned}
& \dot{F}=\frac{2304}{7^{3}}-27+10 \\
& \dot{E}=45 / 7^{2}
\end{aligned}
$$

Now it is possible to perform some mathematical manipulations which simplify this system. In particular, it is easily possible to obtain a first integral of the first equation of the system. However, we regard it as contrary to the spirit of this thesis, the purpose of which deals with the ready feasibility of making an analog computer solution of this system, to perform any such manipulations, and it is

Fig. 1 Force Diagram for Central Force Problem
this system with which we shall be directly concerned when we attempt the analog solution. The numerical solutions for this problem will be found in Appendix 1.
5. Discussion of equipment.

Before taking up the solution of the problem, a description of the equipment used in the solution of this problem will be presented. It is assumed that the reader is already acquainted with the basic theory of the analog computer and with the usual circuitry used, such as summers, integrators, etc. The Handbook of Automation, Compution and Control, Vol. 2, E. M. Grabbe, (1), is a good reference for this information as well as for additional information on the equipment discussed below.
A. Donner Analog Computer, Model 3000 .

This analog computer, which can be used for the quantitative solution of linear (and certain classes of non-linear) differential equations and transfer functions, contains ten DC operational amplifiers, any one of which can be used for addition, subtraction, multiplication or division by a constant, sign changing, or integration. Problems expressed as differential equations are entered in terms of electrical components on a detachable problem board. Stability and accuracy are satisfactory for problem solution times up to 100 seconds or more which permits accurate recording with conventional pen recorders. (5)
B. Donner Function Multiplier, Model 3730 .

This function multiplier consists of two multiplier
channels and a regulated power supply. Each multiplier channel produces an output voltage which is accurately proportional to the instantaneous produce of two independent input voltages, where each input is either

constamt or warying with time. Either input may be positive or negative, so that four quadrant multiplication is provided. The range of ontput and input voltages is plus and minus 100 volts; this beimg neeessary to stay within the limear range of the operational amplifiers of the computer. To maintain the output voltage at 100 volts or less the Fumetiota Multiplier is designed to give an output voltage which is .OI the product of the input voltages. 16)

For the solution of the problem of this thesis two of these multipliers were used. They gave accurate results when used for stralght multiplication although they do tend to drift over a period of time and have to be readjusted; this is a minor operation, however. When used in a division circuit, which is discussed in a later section, the results obtained were not as accurate, however. It is believed, however, that this was a Eavit of the circuit and not of the function multiplier bacause, as mentioned above, the function multipliers gave quite accurate outputs when used for multiplication alone.
C. Donner Function Generator, Model 3750.

This variable base function generator is designed for use in conjunction with two external operational amplifiers to produce an output voltage which can be adjusted to approximate a jesired single valued function of the input voltage. One operational amplifier is required for operation of the function generator and the other is used so accept the output signal at its summing junction. This amplifier may also be used for additional summings inverting, integrating or other operations. The function generator operates on the principal that the function can be
侸
approximated by a series of straight line segments, each segment being limited to a slope between plus and minus two volts per volt. The input and output voltages may vary between plus and minus 100 volts.

For the solution of the thesis problem it was desired to use this function generator to generate the function $2304 / r^{3}$ but it was found that the slope of curve for this function exceeded the capability of the equipment. This is duscussed further in Sec. 9. If it had been possible to use this function generator the two function multipliers would not have been required.
6. Computer equation and scaling.

To reduce our problem to a form suitable for the computer it is necessary to apply scaling factors. This was done using the methods outlined in Basic Theory of the Electronic Analog Computer, by R. C. H. Wheeler, (9). A brief summary of this process is presented here.

The differential equation to be solved is first arranged so as to solve for the derivative of the highest order. In our case $\because \because \pi=\frac{A}{M^{3}}$ $-B X+C$. The equation is then scaled so that maximum value of each parameter is represented by a voltage, close to but not exceeding 100 volts. To do this scaling factors are assigned as shown by the following example:

$$
x=\alpha_{x} X
$$

Here X is the computer voltage representing the variable x, and α_{x} is its scaling factor. After being calculated the scaling factor is usually rounded off to facilitate computations. After suitable scaling factors are found, the equation is put into the form:

 - ต1:

$$
\begin{aligned}
x_{\ddot{n}} \ddot{R} & =\frac{A}{x_{1} R}-B x_{r} R+C \\
\ddot{K} & =\frac{A}{x_{j}^{\prime} V_{i} R}-\frac{U x_{r} K}{x_{;}}+\frac{C}{;}
\end{aligned}
$$

To develop the applicable circuits for the problem solution it is necessary to determine the values of resistance and capacity needed for each component of the circuit. Using the procedures in wheeler ${ }^{0}$ s book, (9), pages 2-10 we find, for example, that an operational amplifier when used as a summer has an output voltage $e_{0}=-\left(\omega_{1} e_{1}+\omega_{2} c_{2}+\right)$ or in our case $\ddot{R}=-\left(\omega_{1} \frac{\mu}{R^{3}}-\omega_{2} R_{+} \omega_{2} c\right)$. If we now let $\omega_{i}=\frac{a_{i} \cdot R_{f}}{R_{i}}$ where a_{i} is a coefficient potentiometer setting and R_{f} and R_{i} are resistances, we can establish the relationship $\quad a_{i}=\frac{\omega_{i} R}{R}$ It should be noted here that an R with a subscript, R_{i} refers to a resistor and, R, without the subscript refers to the voltage representing the variable r, the radius of the problem. Now the above relationship can be solved for a_{i}. For integrators the relationship is $\omega_{i}=\frac{a_{i}}{R_{i} C_{f}}$, where C_{f} refers to a capacitor.
7. Analog computer circuits.

In Appendix II the calculations for scaling the differential quations of our problem are presented. After scaling we have the following equations:

$$
\begin{aligned}
& \dot{R}=z-.8 R+20 \quad z=\frac{576,000}{R^{3}} \\
& \dot{\theta}=30,000 / R^{2}
\end{aligned}
$$

Before solving this problem on the analog computer two main decisions have to be made: first how to calculate R^{3} and R^{2}, and second how to develop the terms $Z=576,000 / R^{3}$ and $\dot{\theta}=30,000 / R^{2}$. It was hoped at first that the terms for Z and $\dot{\theta}$ could be developed using fundtion generators but as mentioned previously this proved unsatisfactory. Thus it was expedient to use the division circuit shown in Fig. 2.

Fig. 2
With this circuit $Z=\frac{100 R_{1} X}{P}$. The factor 100 results from the output of the multiplier bcing .01 Y 己. If we now let $Y=R^{3}$ and X $=$ constant, using the above relationship we should be able to develop $Z=576,000 / R^{3}$ 。

We know from the parameters of the problem that when r is 4 , R should be 20 volts. If we then put this value through two function multipliers we come up with $K^{2} R^{3}$. As this value is small, 8 volt, we multiply it by a factor of two using an operational amplifier and then put it into the function multiplier of the division circuit. Also using this value of the voltage for R we can calculate the value Z should have, in this case 72 volts. With these values we can now solve for a value of X so that with an input of 1.6 volts for Y and the calculated value of X, Z will be 72 volts. Solving for X :

Now letting R_{2} equal $10 M$ and R_{1} equal $1 M$, we find that an X of 11.5 should be used. (It was found that resistances of 10 M and 1 M sorked better than resistors of 0.1 M and 1 M). This same procedure was applied to $\dot{\theta}$ and the corresnonding voltage, X_{1} was found to be 30 volts.

It should be noted here that another method for determining $\dot{\theta}$ presents itself, that of multiplying Z by $R / 19.2$. By doing this the second division circuit could be eliminated and only another multiplication, with its more accurate results, required. This method was tried and it was found that for some unexplained reason $\dot{\theta}$ passed through zero and became slightly negative. As a result of this θ oscillated instead of increasing smoothly from zero to a maximum value. For this reason the division circuit for developing $\dot{\theta}$ was used.

After the above determinations were made, the circuit of Fig. 3 was assembled and computations made. In assembling the circuit the values of the a° s calculated in Appendix II were adjusted for the actual values of resistances and capacitors used, e.g., 1.005 M actual resistance vs。 nominal value of 1 M . Figs. 4 and 5 are photographs of the setup used and shows the relative simplicity of the final setup for solution of the problem。
8. Results.

After assembling the circuit of Fig. 3, it was found that to obtain the desired values of voltage for Z and $\dot{\theta}$ the values of the input voltages calculated for X and X_{1} had to be adjusted. For X_{2} a value of 20 volts, and for X_{1} a value of 33 volts was required. Once these adjustments were made, the computing runs were made and the results are shown on the Brush Recordings of Fig. 6 and Fig. 7. These recordings were all made using a paper speed of $5 / \mathrm{mm} / \mathrm{sec}$ and with varying voltage scales as shown on each trace. These results are also summarized in the table of Fig. 8. From these results curves were ploted and then compared with the results obtained by the numerical solutions, as shown in Figs, $9,10, \& 11$.

In analysing the results each term will be considered separately. Considering r first it is seen that the maximum value of 38 ob tained agrees with the maximum value of the numerical solution but that the minimum value of -12.5 is lower than the -15.26 of the numerical solution. This latter discrepancy is attributed to the actual values obtained for Z and will be discussed later.

In this figure the operation amplifiers
are numbered to correspond to discussion
in Appendix II.

Summary of Analos results

t_{0}	t_{p}	Z	\bigcirc	\%	$\stackrel{8}{\mathrm{R}}$	$\stackrel{\sim}{0}$	θ	*	R	r	${ }^{\text {ct }}$	4°
0	0	76	75	38	0	0	74	2.96	20	4	0	0
	. 1	62	69	34.5	35	$4 \cdot 2$	68	2.72			3	20.5
1	- 2	49	47.5	23.7	57.5	6.9	52	2.08	24	4.8	5.5	37.6
	- 3	38	27.5	13.7	71.5	8.6	41	1.54			7	48.2
2	.4	30	12.5	6.7	80	9.6	31	1.24	34	6.8	8.5	58.3
	. 5	26	2	1	81	9.7	23	. 92			9.5	65.5
3	.6	23	- 7	- 3.5	80	9.5	20	. 80	44	8.8	10	68.7
4	.7	22	-12	- 6	75	9.0	18	.72			11	75.5
	. 8	21	-15	- 7.5	57.5	8.1	15	. 60	53	10.6	11	75.5
	- 9	20	- -17	$=8.5$	60	7.2	13	.52			11	75.5
5	1.0	19	-20	- 10	50	6.0	12	.48	60	12.0	11	75.5
	1.1	18	-21	- 10.5	42.5	5.1	11	0.14			11	175.5
6	1.2	18	-22	-11	32.5	3.9	11	.44	64	12.8	11	75.5
1.3		18	-23	-11.5	22.5	2.7	11	. 44			11	75.5
7.07.4	1.14 1.148	$\begin{array}{r} 18 \\ 18 \end{array}$	$\begin{aligned} & -24 \\ & -25 \end{aligned}$	-12 -12.5	12.5 0	$\begin{gathered} 1.5 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 11 \end{gathered}$	$\begin{aligned} & .44 \\ & .44 \end{aligned}$	$\begin{gathered} 66 \\ 67 \end{gathered}$	$\left[\begin{array}{l} 13.2 \\ 13.4 \end{array}\right.$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 75.5 \\ & 75.5 \end{aligned}$
					- ¢				38			

| |
| :--- | :--- | :--- | :--- |

Fig ll, Radius vs Angle of Rotation

For r the maximum walue obeained was 9.7 and the munamum watuts
 the numerical solution where the maximum velue was 9. 9. Considering r We see from Fig。 9 that the analog values are sightly higher at ali values than the $x^{0} S$ of the mumerical solution. This error is mot considered excessive.

The largest discrepancies appear when we consider 0. As can be seen in Figs. 8, 10 , and 11 the analog value reached its masimum for the first apse (point of greatest distance from the center of atiraction) revidly and then remained constant for a period of time Here as with I the discrepancies are considered to be caused by the yalues obtained for ${ }^{\circ}$.

Considering the problem overall, the more significant results obtarmed appear to agree rather well with the values obtained by uhe numerical solutions. The major discrepancies appear when the part af the circuit handing the division is considered. As can be seen from Figs. 6 and 12 for Z_{3} and Fig. 7 for $\dot{\theta}_{9}$ the outputs of these division circuits change rapidly to a small megative voluage and then remain relatively constant for a period of time. We can also see from rig. 10 that the division circuit does not do what theoretically it should. Thus for either parameter the minimum voltage desired. winen is a maximurn Is never obtained。With $Z_{\text {a }}$ this term is small when compared with the others in summing for ${ }^{8}$ and the effect is mot pronounced. with os however this defect has a more pronounced effect and is not developed in the smooth curve desired.

The discrepancies found in the above problem sulution were ateribniced to the dirision circuits used. No satisfactory answer could lie found as to why the desired divisions could not be obtained. It ly knowit that a circuit surk as this develops a certain amount of noise. That is. the function mutiplier fas a certain amount of noise inherent in its output and that if this is put through an operational amplifier this noiste is maplified. The Handbook of Automation, Compuration and Control. Vol. 2. by Grabbe fl) discusses this briefly and mentior that a small capecitor placed in parallel with the multiplier will tulp ad alleviate this problem. This was cried but did not give satisfactory results.

As mentroned previously, if a function generacor could have been used, the circuitry could have been simplified, ioe. no function mulipliers would have beem required. With the Donner function genexator the Slope of the function $576,000 / R^{3}$, for low values of R, exceed the meximam of two volts per volt permitted by the device. One othet type of function generator was tried. This was an Autograff XY plotrex converted to a function genexator by replacing the recordirg pan with a pick-up coll and plotting the desired function with a conducting inko Howewer, with this arxangement the desired range of voltages could not be obtaiod.

Still another type of function generator that misht have proved satisfactoxy, if it had been available, is the photo-fomer type This typu of function generator operates as follows. The basle piece of equipment is a cathoda-ray tube. An inport voltage is applied between the
thantall deflection plates of a cathode ray tube throug a sultathe कmplifler. The voltage between the vertical deflecti. plates it aryan as the ourput voltage. This voltage is madero vary ab a futaction of the input voltage by a feed-back arrangement which forces the electron beam to follow the bourdary of an opaque mask placed over the lower porthon of the cathode-ray screen. Thus as the spot on the cathode-ray tube screen emerges from behind the mask a photocell in front of the tube apples an error yoltage across the input terminals of the vertical detlection d-c amplifier, so phased that the beam is forced downward toward the face of the mask. Therefore if the mask is shaped to represent the function Wenng generated the spot will follow this curve and deliver atr output voltage proportional to the irput voltage. This type of fumction gemerator is said to be very accurabe in developing mamy functuons. (3) 10. Corsclusions.

Considering the results obtained from this problem (keeping in mind that indeed it is but a single problem), it was found that a "typical" momlinear dynamics problem can be set up on an analog computer. However chis type of set-up is not done rapidly or easily. Considerable thoughe has to be given as to what type of equipment shall be used and what kind of circurts are necessary. Because they require the use of various types of mon-linear compurer accessories the circuits become very sensitive and results accurate to the degree nomally expected from the analog computer may not be obtained. Care has to be taken in selecting scaling factors, where powers and roots are involved, to avoid aver-loading the operational amplifiers. It was fonn, however, that the function muripliers used

In setting upa problem of this type it will usually br Eoumd Har titac will be one key term to be developed, such as the A / R^{3} of this problem. Once a way is found to develop of represert this term the remaining computer setup is routine and with patience and Iuck a solerion can be obrained.

1 S Mourabbe 3. Ramo and D. E. Wooldridge. Fandbook of Automatior, Compntation and Control. Volume 2, Computers and Dete Processing. John Wi
2. H. Mo Paynter, A Palimpsest - * he Electronic Analog Axt, Geg. A. Philiorick Rescarches, Inc. 230 Congress St. Eoston. Mass, 1955.
3. GoA. Korn and T. M. Korn Electronic Analog Computereg 2rd Edituri McGraw-Hill Book Co. 1956.
4. Operatheg Handbook Donmer Model 3750 Variable Base Functon Ceneraror, Domer Scientific Co.
5. Operating Handbook Donner Model 3000 Analog Compurex.
6. Operating Hardbook Donner Model 3730 Function Mulcipliet.
7. Jo Lo Synge and BoA. Griffith, Principals of Mechardcs, 2nd editiori MeGraw-Hil1 Book Co. 1947 .
8. N. C. Riggs, Applied Mechanics, The Macmillan Co. 1930.
9. R.C.H. Wheeler, Basic Theory of the Electronic Aralog Computer, Donmer Scientific Co.s 2829 - 7th St.o Berkeley, Califor 1955.

APPENDIX I

Numerical 50 Lotions for Central Force Problem
The statement of the problem is given in Sec 。 3 on page 2。 Representing this information in mathematical terms, we have sprite $10\left(\mathrm{r}-5\right.$) lbs. and $m=1930 / 386=51 \mathrm{bs} \mathrm{sec}^{2} / 1 \mathrm{~m}$ mg and initially (at time $=0$ we have $r=4$ inches, $\dot{r}=0,0=0$ and $0=3$ radians/sec. since energy is conserved, we have

$$
E=1+x \quad 1 / 2\left(\sin ^{2}+i^{2}+\operatorname{s}^{2}\right)+\left(11-3^{2}\right)^{2}=C \sin \tan t
$$

where $E_{y} T_{9}$ and V are expressed as energy per unit mass in units
 Using the initial conditions to evaluate E_{9} we have

$$
\begin{aligned}
& \therefore 1 / 2\left(4^{2}, 3^{2}+\pi\right)+3+1 \\
& \therefore \% 3+1 \\
& \therefore=13
\end{aligned}
$$

At apses \quad y \quad ar Apsidal radio are

$$
\begin{aligned}
& \text { (y) and rationalizing we get: } \\
& 1 . \frac{48^{2}}{174}+(7-5)^{2}=7.5
\end{aligned}
$$

$$
\begin{aligned}
& 3^{3}-48-2+110
\end{aligned}
$$

 This can Rave only one positive root. Synthetic division indicates a root of approximately 13.2 and using Newton's method:

$$
\begin{aligned}
f(7) & =13-64^{2}-72-2-258 \\
\left.f^{\prime}(i)\right) & =3.8^{2}-127-72 \\
a_{1} & =13-\frac{f(13)}{f^{\prime}(13)}=13-\frac{(-41)}{279}=13.15 \\
a_{2} & =13.15-\frac{f(13.15)}{f^{3}(1315)}=13.15-\frac{1.594}{28897}=13.1445 \\
a_{3} & =13.1445-\frac{f(13.1445)}{f(13.1445)}=13.1445-\frac{.00756}{288.5996} \\
& =13.144738
\end{aligned}
$$

To find the apsidal angle and r and θ as functions of time, we resort to a numerical procedure since the integral involved is not elementary. Returning to fundamentals we have:

$$
\begin{aligned}
& T+V=1 / 2\left(H^{2}+\lambda^{2} \theta^{2}\right)+(\lambda-5)^{2}=73 \\
& h=\pi^{2} \theta=48 \\
& \mu-m \theta^{2}=-2(r-5) \\
& \therefore \ddot{M}=\frac{2304}{\pi 3}-2 n+10
\end{aligned}
$$

We also know $r_{1}=4$ and $r_{2}=13.144$. Now using an iterated integration, a curve of $r=r(t)$ is assumed such that $\dot{r}=0$ at the end points (apses). The apsidal time $\tilde{\sim}$ is divided into n equal intervals \tilde{y} / n; \check{C} being as yet unknown. We will use $n=6$, although a larger n will give a more accurate result.

Assumed values of r^{0} are selected for each epoch. Values of r are calculated and integrated with the condition $\pi=0$ at $Z=0$ This should yield $j=0$ at $t=\imath$, but there is an error E. We remove this error by using a correction curve which is essentially $\Delta r^{\prime}=\frac{\left(2 t^{3}-3 t^{2} \approx\right)}{2}$ expressed however in appropriate form for and obtained by numerical integration. This arises from assuming that the error in is is due to anerror in which must be essentially parabolic in natures vemish-

Itie at the end points since the apsidal distances are known The rest of the calculations are self explanatory and lead to the curved pach shown in Fig. 9.

From the expression for $E, n^{2} i^{2}+i^{2}+2\left(h-Y^{2}=2 \vdots-t^{2}\right.$ Upon substituting $\theta=48 / \mathrm{v}^{2}$, we get \hat{M}^{2} as a function of and thus can construct a curve of as a function of of (We take the positive branch of the square root so as to deal with the period during which r is increasing from 4 to 13.145 inches.). Also we have $\ddot{M}=\frac{2301}{\mu^{2}}-2 \mu+10$ so that we can construct a curve of Mr as a function of r, and this relation shows that $\ddot{M}=0$ when r is approximately equal to 7.62 . Having curves of both in and " as functions of r, we can construct a curve of i as a function of is . The differential of time may be written in either of two weys l $t=\frac{d y}{j y}$ ir $\frac{d y_{i}^{i}}{i j} \quad$, and this permits us to wirite
so as to avoid infinite values for the integrands. These calculations can be carried out by numerical methods as shown on the following pages and t is found to be 1.4863 seconds, which agrees with the value of " calculated in the first numerical solution.

															-											
												震														
																			,							
																			1							
- $\square_{\text {¢ }}$,		,											-							
		,		-	-																					
																						-				
																					-					
		${ }^{4}$	H			\%	-9				H0	H			-	Q			\checkmark	-	${ }^{1}$	3				
																					-	- ${ }^{\circ}$				
										\%		\%										,				
											${ }^{3}$	\%														
												$1{ }^{3}$								-						
																	-	\%								
																	1									
							N									,	+									
																-										
							¢ 7				-	-3														
						,									,		+		-						相	
											,															
																						-	-	-	T	-
						+		-			4	-					,		.	-	-	-				

偘

Fig。 A20 - r vs radius

APPENDIX II

Scaling Equations for Central Force Problem

The basic equations for this problem are:

$$
\begin{aligned}
& \pi=\frac{2304}{M^{2}}-2 \pi+10 \\
& \theta=48 / r^{2}
\end{aligned}
$$

The initial conditions at time $t=0$ are:

$$
M=4, \quad i=0, \quad \theta=0, \quad \theta=3,
$$

and we also know from the numerical solution that the approximate maximum values of each of the parameters are:

$$
\begin{array}{ll}
\mu=13.14 & \dot{y}=9,6 \\
\mu=38 & \dot{\theta}=3
\end{array}
$$

Also from the numerical solution we know that the time from apse to apse is about 1.46 seconds. For our solution we will select $\theta=3 \pi \%$, 1.5 revolutions) as we are only interested in the initial aspect. Knowing the maximum values and using the relationship $x=\alpha_{x} X$, as explained in Sec. 6, we can now solve for the scaling factors.

$$
\begin{aligned}
& \alpha_{r}=\frac{13.14}{100}=1314 \quad \therefore \operatorname{Let} \alpha_{\pi}=.2 \quad R_{\text {lox }}=6531 \mathrm{~V} \\
& \alpha_{r i}=\frac{9.6}{100}=.096 \quad \therefore \angle e t \alpha_{3}=.12 \quad \hat{R}_{\max }=80 \mathrm{~W} \\
& \alpha_{i r}=\frac{38}{100}=.38 \quad \therefore L e t \alpha_{; j}=55 \quad \ddot{R}_{\text {mar }}=36 \mathrm{~V} \\
& \alpha_{\theta}=\frac{3 \pi}{100}=.0912 \quad \therefore \operatorname{Let} \alpha_{\theta}=.12 \quad \theta_{\text {max }}=38,5 \mathrm{~V} \\
& \alpha_{\dot{\theta}}=\frac{3}{100}=, 03 \quad \therefore \operatorname{Let} \alpha_{\dot{\theta}}=104 \quad \theta_{\max }=75 \mathrm{~V}
\end{aligned}
$$

For time scaling we wish to slow the problem time down so we assume $t_{c}=5 t_{p}$, giving a period for the computer of 7.3 seconds, apse to apse.

$2-2+2$
\qquad

Now using the above scaling factors we can proceed to scale the basic equations for the computer:

$$
\begin{aligned}
& \alpha_{\mu}^{\infty} \ddot{R}=\frac{230 \gamma}{\left(\alpha_{n}^{3} R^{3}\right)}-2 \alpha_{s} R+10 \\
& \ddot{R}=\frac{2304}{\alpha_{i j} \alpha_{n}^{3} R^{3}}-\frac{2 \alpha_{j} R}{\alpha_{i j}}+\frac{10}{\alpha_{i j}} \\
& =\frac{2304}{.5(.2)^{3} R^{3}}-\frac{2 \cdot 0.2}{.5} R+\frac{10}{.5} \\
& =\frac{576,000}{R^{3}}-8 R+20 \\
& \alpha_{\theta} \dot{\theta}=\frac{4 \delta}{(\alpha, R)^{2}} \\
& \theta^{\prime}=\frac{4 \delta}{\alpha_{\theta} \alpha_{\lambda}^{2} R^{2}} \\
& =\frac{48}{104(2)^{2} R^{2}} \\
& =\frac{30,000}{R^{2}}
\end{aligned}
$$

The equations are now in the form $R^{\infty}=-\left(\omega_{1} z-\omega_{2} R+\omega_{3}^{\prime}, 20\right)$ where $Z=576,000 / R^{3}$, and $\dot{\theta}=30,000 / R^{2}$. Because Z and $\dot{\theta}$ are developed by the division circuits and 20 is a constant voltage their a_{i} values (coefficient potentiometer settings) are each 1. Thus their corresponding resistors are all 1 M 。 To determine the value of a_{2} we use the relationship $\omega_{i}=\frac{a_{i} R_{f}}{R_{i}}$. Equating ω_{2} to $\frac{a_{2} R_{f}}{R}=8$ and letting R_{2} and $R_{f 2}$ equal $1 M$, we find a_{2} to be . 8 .

To obtain R and R we must integrate \int and it ep ar te We therefore scale these equations as follows:

$$
\begin{aligned}
& x_{i} \dot{R}=-\int \frac{\alpha f_{j} \stackrel{\ddot{R}}{\alpha}}{\alpha_{t}} d t_{C} \\
& \hat{R}=-\frac{\alpha_{\dot{r}}}{\alpha_{s} \alpha_{t}} \int \ddot{A} d t_{c} \\
& =-\frac{.5}{.12 .5} \int \ddot{R} d t_{c}=-.83 .3 \int \tilde{R}^{2} d t_{c}=-\omega_{4} \int \tilde{R}^{d} d t_{c} \\
& \alpha_{n} R=-\int \frac{\alpha_{\dot{\prime}} \dot{R}}{\alpha_{t}} d t_{c} \\
& =-\frac{\alpha_{j}^{\prime}}{\alpha_{j} \alpha_{t}} \int \dot{R} d t_{c} \\
& =-\frac{12}{2 \cdot 5 \pi} \int^{2} d t_{C}=-, 12 \int R_{0} d t_{c}=-\cos -\int R_{0} d t_{c}
\end{aligned}
$$

Now using the relationship $C C_{i}+\frac{a_{i}}{R_{i} C_{f}}$ we solve for a_{4} arid a_{5} as shown below. The resulting values are .833 and .48 respectively using the resistors and capacitors shown.

To complete our scaling we must now determine the a value for $\theta \cdot \theta$ is found by integrating $\int \dot{\theta} d t_{\rho}$. Scaling this equation we find:

$$
\begin{aligned}
x_{i} \theta & =-\int \frac{\alpha \theta \theta}{\alpha_{t}} d t_{c} \\
\theta & =-\frac{\alpha_{\theta}}{\alpha_{\theta} \alpha_{t}} \int \theta d t_{c}=\cdots \frac{0,}{} \int \theta d t c \\
& =\cdots, 066 \int \theta d t_{c}=-\operatorname{ciq} \int A \theta_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{4}=\frac{a_{4}}{R_{4} C_{f 3}}=.833 \quad \begin{array}{l}
R_{4}=1 \mathrm{M} \quad C_{f 3}=1 \mu f \\
\omega_{5}=\frac{a_{5}}{R_{5} C_{44}}=.12 \quad a_{4}=.830 \\
R_{5}=2 \mathrm{M} \quad C_{f 4}=2 \mu f \\
\omega_{9}=\frac{a_{9}}{R_{9} C_{f 5}}=.066 \quad a_{5}=.48 \\
\end{array} \begin{array}{l}
R_{7}=5 \mathrm{M} \quad C_{f 5}=1 \mu f \\
\therefore a_{9}=.30
\end{array}
\end{aligned}
$$

The problem is now ready for the computer. The table on the following page summarizes the values for all resistors and capacitors" used for this problem.

Fig. A21

APPENDIX III

The Spinning Top

During this investigation, some attention was also directed to the problem of the spinning top; that is a symmetrical top with one pcint fixed under the action of gravity. Using the notation of Synge and Griffith, (7), the equation $\dot{x}^{2}=1 / A\left(2 E-\frac{\beta^{2}}{C}-2 m q \operatorname{cix}\right)\left(i-x^{2}\right) \cdot \frac{(\alpha-\beta x)^{2}}{A^{2}}$ was reduced to the form of $\dot{x}^{2}=A x^{3}-B x^{2}+C x+D$

A sample problem was then selected from Applied Mechanics by NoC.
Riggs, (8), which consisted of a gyroscope being released with equal to 60 degrees and the subsequent motion being an oscillation between 60 and 82 degrees while precessing at a variable rate.

With this problem, as with the central force problem, the powers of x could be obtained using function multipliers. The key to the solution however consists of developing the square root of \dot{X}^{2}. This should be possible using either a function generator or a division cixcuit similar to that of the central force problem. Using the function generator was tried first. A curve of $Y=10 \mathrm{X} 1 / 2, \mathrm{X}$ and Y being arbitrary voltages from zero to 100 , was calculated and set into the function generator. It was then found on scaling the problem that to prevent the term CX from exceeding 100 volts it was necessary to assign to \dot{x}^{2} a maximum voltage of approximately mine volts. Then when the circuit was assembled it was found that this voltage was too small for the function generator to operate.

When the use of the function generator proved to be unsatisfactory the use of a division circuit was attempted. To use this it was assumed
that the following relationship was valid. We know that for this cixcuit $Z=\frac{10 C}{R} Y$. X. Now letting Y equal Z and chen solving for x we find that $x=\frac{R_{2} Z^{2}}{100 R_{1}}$, or Z equals $10 x^{1 / 2}$, with $R_{1}=R_{2}=1 M$. This arrangement was then put into the circuit and computations attempted. It was found that the operational amplifier generating X went from its initial value through zero and then overloaded, i.e., the voltage X (representing $x=\operatorname{Coz} \theta$), did not vary as it should since the circuit was unstable.

After the above attempts failed it was decided that this particular problem could not be scaled satisfactorily for an acceptable analog computer solution within the time available.
thesM24
Analog solution of central force problem

[^0]: $\frac{1}{2} / d t$ is denoted by a dot placed above the variable opexated on. pumbers in parentheses refer to references in Bibliogrephy.

