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ABSTRACT

Electronic analog computers have been used extensively for the

solution and display of many dynamics problems. The majority of the

problems worked with have been those involving linear differential

equations with constant coefficients. In cases involving non- linear

differential equations fewer solutions have been developed. This ha®

been due mainly to the need of using non- linear elements in the com-

puter circuits when setting up the solutions.

One such problem, that of a mass moving under the action of a

first power central force, is treated in some detail. The differen-

tial equation is derived, the problem is scaled, and the circuitry

developed. Solutions obtained by the use of the electronic analog

computer are displayed and compared with solutions obtained by num-

erical methods and errors and their sources are discussed. Finally

there is an overall evaluation of the usefulness of analog computers

to this sort of problem. In an appendix, a second practical dynamics

problem is discussed, but a solution was not obtained due to lack of

time available.
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1, Introduction

This thesis presents the electronic analog solution to a non-

linear dynamics problem which leads to the differential equation

*" A fix I f 1
An example problem is taken and the steps in reduc-

ing it to a form suitable for an electronic analog computer^ hereafter

referred to as an analog computer, are shown. The results are then

compared with two solutions obtained by numerical methods. In Appen-

dix III an equation of the form; >< =AX f 8X is

discussed and the problems encountered in trying to obtain an analog

computer solution are delineated.

The writer wishes to express his appreciation for the assistance

given him by Professor John E. Brock and to the Professors, particular-

ly Professor 0. H» Polk, and the technicians of the Electrical Engineer-

ing Department. The numerical solutions in Appendix I were contributed

by Professor Brock.

2. Background.

Solutions for many dynamics problems have been established using

analog computer and references can be found in the technical litera-

ture. One such reference for a non- linear problem^, Analog Computer Solu-

2
tion of a Non- Linear Differential Equation, by H. G. Markey, (2) , was

found but was only applicable in a general way to this investigation.

It was considered that if a means could be found to display some

of the classical problems encountered in early college dynamics on the

i

?
d/dt is denoted by a dot placed above the variable operated on,

"vers in parentheses refer to references in Bibliography.,





analog computer the following advantages would be obtained;

(a) the general usefulness of the analog computer could be

made more readily apparent;

(b) in dealing with these problems attention could be focused

on the dynamic principles leading to the governing differential equations

and upon the mechanical significance of the results and not upon the mathe-

matical difficulties in obtaining an analytical solution;

Cc> in the case of those problems where analytical solutions

have been obtained for certain particular parameter values and which

therefore seem to be separated into many different cases the dynamical

significance of which is not apparent, the general problem could be

dealt with directly;

(d) it would be possible to include normal dynamical in-

fluences fsuch as energy loss due to pivot friction or windage) with-

out so complicating the mathematics of the solution that the modified

problem appears to be entirely different from the idealized problem,,

In addition to the above it was desired to obtain these results

using only the analog computers and their associated equipment, normal-

ly available in an analog computer laboratory.

3o The problem and general method cf solution.

The problem considered was that of determining the subsequent-

motion of a body weighing 1930 pounds, attached to a spring having a

free length of five inches and a scale of ten pounds per inchj, when

released with the following initial conditions,, At the initial instant

the radius is four inches and its rate of change is zero; the polar

anglej » ^ s zero and its rate of change is three radians per second.





end of the spring is attached to a fixed point and the body

srmitted to slide without friction upon a horizontal plane.

We will discuss the sequence of steps necessary for the solution

a problem of this type
9
and then we will proceed with the solution.

One might of course proceed with a full scale experimental program as

a method of solution^ but eliminating this possibility we would

s

a. Using the principals of Mechanics arrive at one or more

differential equations describing the motion.

b„ Solve these equations
9

incorporating the starting condi-

tions. This solution may be analytic^ numerical^ experi-

mental (dealing with, possibly, scaled down mechanical

variables)
9
or by means of an analog

s
in which one deals

experimentally with variables of another type (such as

electrical) which satisfy similar differential equations,

Co Interpret the mathematical, experimental 8
or analog results

in the proper mechanical light so as to arrive at a mean-

ingful solution to the original problem.

In this thesis 8
we are investigating the practicability of pro-

ceeding immediately from the first step to a solution by use of stand-

ard analog computer equipment. We do not have an analytical solution

to the problem stated
s
although it is likely that one might be obtained

in terms of elliptic functions and integrals. However^ in an appendix

we will develop two different numerical solutions to the problem with

which we can compare our analog solutions.





The differential equation of motion.

Figo 1 shows the body in a general position. The solid arrow re-

presents the spring force F = 10(r-5), where r represents the radial
s

distance from the fixed point 0, The dotted arrows represent D'Alembert

forces necessary for dynamic equilibrium. We see that

Fs +• Yn <X,
7

r: O
Yn o*,q ~ O

Now by kinematics, a^-r?-n& and <^-& --L sL. (n*& ) . From the

second equation we see that ft & z C = Ccfi$£
t . This can also be seen

from the fact that the angular momentum of the system about 0, namely

Yn ft & , is invariable. From the first equations, we have

10 (* -s) +F * 3 7j. (ji -jygfy-Q t
and from this we iit-ih-lo+b-hd^z-O .

Substituting & =.
C/m^- we finally get ft = .£ Q.h + /O

In our case
s
evaluating C at the initial instant we have C = 48, Thus

we have as our set of differential equations:

Now it is possible to perform some mathematical manipulations which

simplify this system. In particular, it is easily possible to obtain a

first integral of the first equation of the system. However
9
w© regard

it as contrary to the spirit of this thesis, the purpose of which deals

with the ready feasibility of making an analog computer solution of this

system, to perform any such manipulations, and it is

.<£?

<rfi*

Fig. 1 Force Diagram for Central Force Problem

4





this system with which we shall be directly concerned when we attempt

the analog solution* The numerical solutions for this problem will be

found in Appendix I.

5* Discussion of equipment.

Before taking up the solution of the problem, a description of

the equipment used in the solution of this problem will be presented*

It is assumed that the reader is already acquainted with the basic theory

of the analog computer and with the usual circuitry used, such as summers,

integrators, etc. The Handbook of Automation, Compution and Control,

Vol, 2, E. M. Grabbe, (1), is a good reference for this information as

well as for additional information on the equipment discussed below,

A, Donner Analog Computer, Model 3000,

This analog computer, which can be used for the quantita-

tive solution of linear (and certain classes of non- linear) differential

equations and transfer functions, contains ten DC operational amplifiers,

any one of which can be used for addition, subtraction, multiplication or

division by a constant, sign changing, or integration. Problems express-

ed as differential equations are entered in terms of electrical components

on a detachable problem board. Stability and accuracy are satisfactory

for problem solution times up to 100 seconds or more which permits ac-

curate recording with conventional pen recorders. (5)

B. Donner Function Multiplier, Model 3730.

This function multiplier consists of two multiplier

channels and a regulated power supply. Each multiplier channel produces

an output voltage which is accurately proportional to the instantaneous

produce of two independent input voltages, where each input is either





constant or varying with time Either input may be positive or negative
9

so that four quadrant multiplication is provided,, The range of output

and input voltages is plus and minus 100 volts; this being necessary to

stay within the linear range of the operational amplifiers of the com-

puter. To maintain the output voltage at 100 volts or less the Function

Multiplier is designed to give an output voltage which is ,01 the product

of the input voltages, f6)

For the solution of the problem of this thesis two of these multi-

pliers were used. They gave accurate results when used for straight

multiplication although they do tend to drift over a period of time and

have to be readjusted; this is a minor operation, however. When used in a

division circuit, which is discussed in a later section^ the results obtain-

ed were not as accurate^ however. It is believed, however, that this was a

fault of the circuit and not of the ^unction multiplier bacause, as mention-

ed above, the function multipliers gave quite accurate outputs when used

for multiplication alone.

C. Donner Function Generator, Model 3750.

This variable base function generator is designed for use in

conjunction with two external operational amplifiers to produce an output

voltage which can be adjusted to approximate a desired single valued

function of the input voltage. One operational amplifier is required for

operation of the function generator and the other is used to accept the

output signal at its summing junction. This amplifier may also be used

for additional summing^ inverting, integrating or other operations. The

function generator operates on the principal that the function can be





approximated by a series of straight line segments, each segment being

limited to a slope between plus and minus two volts per volt. The input

and output voltages may vary between plus and minus 100 volts. (4)

For the solution of the thesis problem it was desired to use

3
this function generator to generate the function 2304/r but it was found

that the slope of curve for this function exceeded the capability of the

equipment. This is duscussed further in Sec. 9. If it had been possible

to use this function generator the two function multipliers would not have

been required.

6. Computer equation and scaling.

To reduce our problem to a form suitable for the computer it is

necessary to apply scaling factors. This was done using the methods out-

lined in Basic Theory of the Electronic Analog Computer, by R. C. H. Wheel-

er> (9). A brief summary of this process is presented here.

The differential equation to be solved is first arranged so as to

o* A.

solve for the derivative of the highest order. In our case K- = H-
n3

-BX-f-C . The equation is then scaled so that maximum value of each para-

meter is represented by a voltage, close to but not exceeding 100 volts,,

To do this scaling factors are assigned as shown by the following ex-

ample:

X = oc. X

Here X is the computer voltage representing the variable x, and oC^

is its scaling factor. After being calculated the scaling factor is

usually rounded off to facilitate computations. After suitable scaling

factors are found, the equation is put into the form:





«*R A-., - s*„R ,c
.'0'

To develop the applicable circuits for the problem solution it is

necessary to determine the values of resistance and capacity needed

for each component of the circuit. Using the procedures in Wheeler'

s

book
s (9), pages 2-10 we find, for example, that an operational amplifier

when used as a summer has an output voltage ^ -~LU-J,G
/

-f-w^C.^ -4
)

or in our case Rs-(wi SL _ ^K^i^H . If we now let 6^ - c*-^ Kf-

where a. is a coefficient potentiometer setting and R_ and R. are re-
x

r
f i

sistances, we can establish the relationship C*--^ _ UJj, '\ ,_

It should be noted here that an R with a subscript, R„. refers to a resis-

tor and . R. without the subscript refers to the voltage representing the

variable r, the radius of the problem. Now the above relationship can

be solved for a . For integrators the relationship is Co^ - ^Z^=- »

where C
f
refers to a capacitor.

7. Analog computer circuits.

In Appendix II the calculations for scaling the differential equa-

tions of our problem are presented. After scaling we have the follow-

ing equations:
ft = __, _ ^ g> ^ 0Q Q

K 3

Before solving this problem on the analog computer two main decisions

3 2
have to be made: first how to calculate R and R , and second how

3
* 2

to develop the terms Z = 576,000/R and & = 30,000/R . It was

hoped at first that the terms for Z and could be developed using func-

tion generators but as mentioned previously this proved unsatisfactory,,

Thus it was expedient to use the division circuit shown in Fig. 2„

8





H
«<

<-

h
\AAA-

Division Circuit (6)

Fig. 2

With this circuit Z = 100R| X The factor 100 results from the

2 3
output of the multiplier being .01 Y£. If we now let Y = R and X

= constant, using the above relationship we should be able to develop

Z = 576,000/R
3

.

We know from the parameters of the problem that when r is 4
S

R should be 20 volts. If we then put this value through two function

2 3
multipliers we come up with K R . As this value is small, .8 volt, we

multiply it by a factor of two using an operational amplifier and then

put it into the function multiplier of the division circuit. Also using

this value of the voltage for R we can calculate the value Z should

have, in this case 72 volts. With these values we can now solve for a

value of X so that with an input of 1.6 volts for Y and the calculated

value of X , Z will be 72 volts. Solving for X:

X - - / !\ >

/oo R t

Now letting R ~ equal 10M and R equal 1M, we find that an X of

11.5 should be used. (It was found that resistances of 10M and 1M worked

better than resistors of 0.1M and 1M) . This same procedure was applied

to & and the corresoonding voltage, X. was found to be 30 volts.





It should be noted here that another method for determining Q

presents itself, that of multiplying Z by R/19.2. By doing this the

second division circuit could be eliminated and only another multiplica-

tion
3
with its more accurate results, required. This method was tried

and it was found that for some unexplained reason Q passed through

zero and became slightly negative. As a result of this S oscillated

instead of increasing smoothly from zero to a maximum value. For this

reason the division circuit for developing Q was used.

After the above determinations were made, the circuit of Fig. 3 was

assembled and computations made. In assembling the circuit the values of

the a's calculated in Appendix II were adjusted for the actual values of

resistances and capacitors used, e.g., 1.005 M actual resistance vs.

nominal value of 1M. Figs. 4 and 5 are photographs of the setup used

and shows the relative simplicity of the final setup for solution of the

problem.

8. Results.

After assembling the circuit of Fig. 3, it was found that to obtain

the desired values of voltage for Z and the values of the input vol-

tages calculated for X and X- had to be adjusted. For X s
a value of

20 volts, and for X a value of 33 volts was required. Once these ad-

justments were made
s

the computing runs were made and the results are

shown on the Brush Recordings of Fig. 6 and Fig. 7, These recordings were

all made using a paper speed of 5/mm/sec and with varying voltage scales as

shown on each trace. These results are also summarized in the table of Fig.

8. From these results curves were plotted and then compared with the re-

sults obtained by the numerical solutions^ as shown in Figs. 9 S 1Q» & il„

10





In analysing the results each term will be considered separate-

ly„ Considering r first it is seen that the maximum value of 38 ob-

tained agrees with the maximum value of the numerical solution but that

the minimum value of - 12 c 5 is lower than the - 15.26 of the numerical

solution. This latter discrepancy is attributed to the actual values

obtained for Z and will be discussed later.

11





'

<ir j> <z.

E
CO

u
60
CO

3
O
u

en

60
°i-t

•r-< CO
U-l CO

•r4 3
1—

1

CJ

CU CO

E °rA

CCJ "V

C o
o 4J
1-1

•u *t3

CO c
J-l o
(U aa CO

o 0)
u

CD u
J2 o
4-) o

(U o .

l-l u M
3 M
60 -o
•rl a) K
<4-l m •r-l

CU T3
CO JO a

•i-l E CU
£1 3 a.
4J C a

<
c CDM u e

CO •^

12





X
h
<s^>

13





cr^

IH













Summary of Analog Results

*0 V z R
tn1

r R r <9 R

1
1

&

o

1

76 76 38 74 2o96 20 ^
1

1 62 69 34*5 35 4 = 2 68 2o72 3 2O06

1 .2

3

49

38

47.5

27o5

23o7

13 o7

57 o5

71.5

6o9 52 2.08 2k

!

5o5 37oil

806 kl I06U 7 Wol

2 1| 30 12 oS 6o7 80 9o6 31 lo2i| 34 6.6 8oi 58 oj

o5 26 2 1 81 9o7 23 o92 9o5 65S

3 06 23 - 7 - 3o5 30 9c6 20 o 80 kk 8o3 L0 68o7

o7 22 -12 - 6 75 9o0 18 c72 11 75.5

k .8 21 = 15 - 7o5 67.5 8.1 15 06O 53 10o£ a: 75o5

o9 20 -17 - 8.5 60 7.2 13 o52 11 75<>5

75o55 loO 19 -20 -10 SO 6 o 12 .43 60 12oC 11

1.1 18 -21 -10o5 42.5 5.1 11 *44 11 75 .5

6 il.2 18 = 22 -11 32o5 3o9 11 >hk 6k 12 0^ 11 75o5

1 3 13 -23 -11 * dc. 0^. 2.7 11 *44 11 75o5

7o0

7

1.4

lo)4.3

18

13

-24

-25

-12

-12.5

12.5 io5 11

11

44
°44

66

67

13 o2

13 oL|

11

11

75o5

75.5

-\
>7 s

«%=./2

1

Kj-'M r.x

!

Fig. 8

1?













30

20

10

ution
Solution #2

1+6 8

KadiuSj inches
ii+

Fig 11, Radius vs Angle of Rotation

20





Fo-r r the maximum value obtained was 9,7 and the minimum

zero when r was a maximum and a minimum. This agrees well wi

the numerical solution where the maximum value was 9,6, Considering r

w® see from Fig, 9 that the analog values are slightly higher at all vain

than the r°s of the numerical solution. This error is not considered

excessive.

The largest discrepancies appear when we consider ©„ As can be

seen in Figs„ 8 9
10

s
and 11 the analog value reached its maximum for

the first apse (point of greatest distance from the center of attraction'

rapidly and then remained constant for a period of time. Here as with

r the discrepancies are considered to be caused by the values obtained

for ©„

Considering the problem overall^ the more significant results ob-

tained appear to agree rather well with the values obtained by the

numerical solutions. The major discrepancies appear when the part of

the circuit handling the division is considered. As can be seen from

FigSo 6 and 12 for Z, and Fig, 7 for © 9 the outputs of these division

circuits change rapidly to a small negative voltage and then remain re-

latively constant for a period of time. We can also see from Fig, 10

that the division circuit does not do what theoretically it should,, Thus

for either parameter the minimum voltage desired
s
when r is a maximv?'.-

is never obtained. With Z
9
this term is small when compared witli

others in summing for r and the effect is not pronounced. With (

however this defect has a more pronounced effect and % is not dev«

in the smooth curve desired.

21









9, Discussion of discrepancies.

The discrepancies found in the above problem solution were attri

ed to the division circuits used. No satisfactory answer could be found

as to why the desired divisions could not be obtained „ It is known

that a circuit such as this develops a certain amount of noise. That is,,

the function multiplier has a certain amount of noise inherent in its

output and that if this is put through an operational amplifier this

noise is amplified. The Handbook of Automations, Computation and Control,,

Vol, 2
S
by Grabbe (1) discusses this briefly and mentiors that a small

capacitor placed in parallel with the multiplier will help to alleviate

this problem. This was tried but did not give satisfactory results.

As mentioned previously, if a function generator could have been

used
8
the circuitry could have been simplified, i,e„ 9 no function multip-

liers would have been required. With the Donner function generator the

3
slope of the function 576 8 000/ R s for low values of Rs exceed the maxi-

mum of two volts per volt permitted by the device. One other type of

function generator was tried. This was an Autograft XY plotter converted

to a function generator by replacing the recording pen with a' pick-up

coil and plotting the desired function with a conducting ink„ However 8

with this arrangement the desired range of voltages could not be obtain-

ed.

Still another type of function generator that might have proved

satisfactory
s if it had been available, is the photo- former type. This

type of function generator operates as follows. The basic piece of

ment is a cathode -ray tube. An input voltage is applied between

23





.. 1 deflection plates of a cathode ray tube th* stable

amplifier. The voltage between the vertical deflect i< is pla

as the output voltage. This voltage is made to vat i funct

.

of the input voltage by a feed-back arrangement which forces -. lectrom

beam to follow the boundary of an opaque mask placed over the lower por-

tion of the cathode-ray screen. Thus as the spot on the eathode-ray tube

screen emerges from behind the mask a photocell in front of the tube ap-

plies an error voltage across the input terminals of the vertical de£! i

-

tion d-c amplifier
s

so phased that the beam is forced downward toward the

face of the mask. Therefore if the mask is shaped to represent the functis

being generated the spot will follow this curve and deliver an output

voltage proportional to the input voltage. This type of function genera-

tor is said to be very accurate in developing many functions. (3)

10. Conclusions.

Considering the results obtained from this problem (keeping in mind

that indeed it is but a single problem)
9 it was found that a "typical" non-

linear dynamics problem can be set up on an analog computer. However this

type of set-up is not done rapidly or easily. Considerable thought has

to be given as to what type of equipment shall be used and what kind of

-cults are necessary. Because they require the use of various types

of non- linear computer accessories the circuits become very sensitive and

results accurate to the degree normally expected from the analog computer

may not be obtained. Care has to be taken in selecting scaling faetors s

where powers and roots are involved,, to avoid over- loading the operation-

al amplifiers. It was found, however 8
that the function multipliers used

24





square and cube R gave quite accurate results^ even at It-

they were kept balanced.

In setting up a problem of this type it will usually be found

3
that there will be one key term to be developed s such as the A/R of

this problem,. Once a way is found to develop or represent this term

the remaining computer setup is routine and with patience and luck a

solution can be obtained.

2y
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APPENDIX I

Numerical Solutions for Central Force Problem

The statement of the problem is given in Sec 3 on page 2„ Re-

presenting this information in mathematical terms s we have F
spring

2
lQCr-5) lbs. and m = 1930/386 = 5 lbs sec /in. s and initially (at

time = 0) we have r = 4 inches s r = Oj, =
S
and 0-3

radians / sec o Since energy is conserved
8
we have

where E>, T s
and V are expressed as energy per unit mass in units

of it. */ sec
2

. Here we have used V- L. '/*-«-(

Using the initial conditions to evaluate E 9
we have

u

13

i

Ac apses n Apsidal radii are

given by n -$v - Substituting

and rationalizing w@ gets

7 y -/Oft 3 -j-nS'/j
1--

•

3~

/

3 - yr/7'4 -f-zJb

one root is 4 we obtain (/?-</) (

This can have only one positive root„ Synthetic division indicates a

root of approximately 13.2 and using Newton's method;

2 7





<x, ^ /3 - £6l) -_ )3 _ (-")
_^ /3,/j-

To find the apsidal angle and r and as functions of time,, we

resort to a numerical procedure since the integral involved is not

elementary. Returning to fundamentals we have:

,/7 — ftp* - ~a^-*~3

;o /,* ^ 03£T _^ y-/0

We also know r
1

= 4 and r„ = 13.144, Now using an iterated

«

Integration, a curve of r = r(t) is assumed such that r = at

the end points (apses') „ The apsidal time "<Z is divided into n equal

intervals /r\ ; C being as yet unknown. We will use n = 6 S
although

a larger n will give a more accurate result

„

CO „
Assumed values of v* are selected for each epoch. Values of r

are calculated and integrated with the condition/?-^ at £T * °

This should yield/7 -0 at t-^ 8 but there is an error €L „ We remove

this error by using a correction curve which is essentially A ft- (2.^ -i-l ^j^-

expressed however in appropriate form for and obtained by numerical

m
integration. This arises from assuming that the error in r is due

to an error in r which must be essentially parabolic in nature
9
vanish-

28





Ing at the end points since the apsidal distances are known . The rest

of the calculations are self explanatory and lead to the curved

shown in Fig, 9»
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Second Numerical Method

From the expression for E, /f^ & +"A~ +-%(p~ v ^

Upon substituting & /A , we get f^ as a function of A 2

and thus can construct a curve of 77 as a function of Jr\ (We take

the positive branch of the square root so as to deal with the period

during which r is increasing from 4 to 13.145 inches.). Also we have

J~1 ~ £3oV _ ^ /j -f~ J so that we can construct a curve of yy

as a function of r, and this relation shows that fi - O when r is

& a.

approximately equal to 7,62. Having curves of both /? and f) as

functions of r, we can construct a curve of h as a function of A

The differential of time may be written in either of two w«ys

cJLu. c^> <$JX
t
and this permits us to write

ft rr

Aid)
^ 7 A Oj./vst)^ r 4^ ^ r ^ ^ r ^i

so as to avoid infinite values for the integrands. These calcula-

tions can be carried out by numerical methods as shown on the follow-

ing pages and & is found to be 1.4863 seconds
s
which agrees with the

value of calculated in the first numerical solution.
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APPENDIX II

Scaling Equations for Central Force Problem

The basic equations for this problem are:

a -- *%*-

The initial conditions at time t = are:

m~--/
J

w - o
J

a-- o
J

3 --*
j

and we also know from the numerical solution that the approximate

maximum values of each of the parameters are:

Also from the numerical solution we know that the time from apse to apse

is about 1.46 seconds. For our solution we will select 0~-2>Tf » (1.5

revolutions) as we are only interested in the initial aspect. Knowing

the maximum values and using the relationship x - oC^ X s
as explained

in Sec. 6, we can now solve for the scaling factors.

<• - /3./V ,/3/V /, U^<X--,X Ky^-G^V

/0O

h -Si—— —

p/.- - _3_ ^ ,03 / , LcL (*-£ - /C y &y^ j 0*V
^ " /oo

For time scaling we wish to slow the problem time down so we assume

~C .
- S'^p s

giving a period for the computer of 7.3 seconds,, apse to

apse.
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Now using the above scaling factors we can proceed to scale

basic equations for the computer:

(xA
3 «»)

.'>

/•^ TIP

The equations are now in the form f% - —(JaJ. S— dJ., ^ ^~CU,/^°J

re Z = 576, 000/ R , and ^ = 30
S
000/R . Because Z and & are

developed by the division circuits and 20 is a constant voltage their a*

values (coefficient potentiometer settings) are each 1. Thus their

corresponding resistors are all 1M. To determine the value of a- we

use the relationship c
<^j; :_ °^LJ&- . Equating 6*4, to c>^-£2-~ /

^

and letting R„ and R _ equal 1M
S
we find a to be .8.
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To obtain R and R we must integrate ^j ** cx-Ls> and

We therefore scale these equations as follows:

'C

,tt'y

, 2 'w

Now using the relationship ^<'
\
- —^~ we solve for a,.

as shown below. The resulting values are .833 and .48 respectively

using the resistors and capacitors shown.

To complete our scaling we must now determine tie a value

for C7 . cr is found by integrating ( &cx<=p . Scaling this

equation we find 1

fit, ^ - SilA Ja
*&

^---^1 CjJt
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The problem is now ready for the computer. The table on the

following page summarizes the values for all resistors and capacitors

used for this problem.
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1'able of Circuit Elements

Amplifier Circuit Element Remarks

(See Fig. 3) ^and Value

1
R7I = 1M

R72 - 10M
Forms -Z

R 1
"= 1M

r
2 : im

r
3

: im

*,'- Rf2 : im

a^ -1.0

a 2
s 0.8

83 = 1.0

* *

Sums + R

Rl = IM

3 C
f^

= ly-f

a^ - 0.833

- f +R dtp = -R

R^ = 2M

k

ac; = O0I4.8

- f -R. dtp = +R

Rp = 5M

5 C f5 = 1/jf

a g
a 0.33

-j-*aV

7

R81 = IM

R32 = 10M

*

Forms — @

R
6

= 0.1M

9 R - 0.2M
f9

a£ =1.0

2K2 R-*

Fig. A21
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APPENDIX III

The Spinning Top

During this investigation, some attention was also directed to

the problem of the spinning top; that is a symmetrical top with one

pc int fixed under the action of gravity. Using the notation of Synge

and Griffith, (7), the equation *^ % O^^fr - **7*P0 '> l

) -^'A^

was reduced to the form of }< ' #X3 ~ C X
Z

-h c * +" "^

A sample problem was then selected from Applied Mechanics by N, C

Riggs (8), which consisted of a gyroscope being released with & equal to

60 degrees and the subsequent motion being an oscillation between 60 and

82 degrees while precessing at a variable rate,,

With this problem, as with the central force problem, the powers

of x could be obtained using function multipliers. The key to the

solution however consists of developing the square root of X . This

should be possible using either a function generator or a division cir-

cuit similar to that of the central force problem. Using the function

generator was tried first. A curve of Y = 10 X l/2 9
X and Y

being arbitrary voltages from zero to 100,, was calculated and set into

the function generator. It was then found on scaling the problem that

to prevent the term CX from exceeding 100 volts it was necessary to

•2
assign to X a maximum voltage of approximately nine volts. Then

•n the circuit was assembled it was found that this voltage was too

small for the function generator to operate.

When the use of the function generator proved to be unsatisfactory

the use of a division circuit was attempted. To use this it was assumed
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that the following relationship was valid., We know that for this

circuit Z - J_0C R^ X. Now letting Y equal Z and then so

R
2
Y

2 \/Sl
for X we find that X = R^ Z , or Z equals 10 X " , with

100^
R - R = 1M. This arrangement was then put into the circuit and

computations attempted. It was found that the operational amplifier

generating X went from its initial value through zero and then over-

loaded, i.e., the voltage X (representing x = Co<, cr ) s
did not

vary as it should since the circuit was unstable.

After the above attempts failed it was decided that this particular

problem could not be scaled satisfactorily for an acceptable analog

computer solution within the time available.
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